
Identifying Energy-Saving Opportunities for AV1
Video Coding in Streaming Services

Caroline Souza Camargo, Alex Borges, Guilherme Correa
Video Technology Research Group (ViTech)

Federal University of Pelotas (UFPel)
Pelotas, Brazil

{caroline.sc, amborges, gcorrea}@inf.ufpel.edu.br
0000-0002-7563-4556, 0000-0002-1264-5055, 0000-0002-2739-6194

Abstract—Encoding high-quality videos comes at a high energy
cost, mainly due to the various encoding techniques implemented
in modern codecs, such as the AOMedia Video 1 (AV1) codec.
When considering streaming service data centers, this energy
consumption becomes much higher, since the encoding is per-
formed several times for the same video to generate bitstreams
for adaptive bitrate. In this work, we seek to explore the
block partitioning structures of AV1 to identify energy-saving
opportunities in the video encoding process in streaming service
providers. A statistical analysis is performed to identify the oc-
currences of blocks encoded at each partitioning depth in the AV1
reference encoder for different quantization configurations. Then,
by comparing partitioning depths used at lower quantization
levels to depths at higher quantization levels, a proposal to reduce
the computational cost and energy consumption of AV1 video
encoders in streaming data centers is presented.

Index Terms—video coding, AV1, acceleration, energy con-
sumption

I. INTRODUCTION

The consumption of video streaming has grown consider-
ably in recent years, as can be observed with the popularization
of streaming platforms such as YouTube, Netflix, Disney+,
and others. According to the report published by [1], the
streaming industry grew by 26% in the year 2020. This is due
to cultural changes that have taken place in recent decades
and also, partially, to the COVID-19 pandemic, which has
contributed as a catalyst for this new form of entertainment
[2], because of the worldwide “stay home” campaigns. At
the same time, streaming services also try to offer a better
image and video quality. The operation of these platforms
is only possible thanks to efficient algorithms and video
compression formats. Also, video transcoding is an important
functionality for streaming services workflows since some
different video formats need to be supported to guarantee
compatibility with different multimedia devices, in addition
to a great variability and heterogeneity of user bandwidth [3].
Without video compression, streaming videos over the internet
would be unfeasible as the bandwidth requirements for the
uncompressed video would be extremely high.

Streaming service providers usually use standards such
H.264/AVC or H.265/HEVC in their data centers to generate
the encoded bitstreams. However, some of these encoders
are surrounded by complex royalty systems [4]. In 2015 the

Alliance for Open Media (AOMedia) started developing the
AOMedia Video 1 (AV1) [5], a video coding format which
offers an increase in compression efficiency of around 30%
compared to the VP9 video coding format [5], while main-
taining the same level of image quality. Even though the first
version of the AV1 reference software (libaom) was launched
in July 2018, its adoption is significant, being currently present
in 15% of the world market [6]. That way, it is noted that AV1
is a strong candidate to become an increasingly popular video
coding format in the coming years, as the streaming service
needs efficient encoders to perform video compression in high
quality with low cost.

However, to achieve high compression rates AV1 requires
a high computational cost, which leads to high energy con-
sumption. According to [5], the increase in AV1 complexity
is evident when compared to its predecessor, the VP9, mainly
because of the number of tools supported by AV1. Also, the
number of block partitions is a very important contributor
for this high computational cost: while VP9 allows only four
types, AV1 introduced ten partition types, resulting in an
increase from 13 block sizes in VP9 to 22 block sizes in AV1.
Thus, the set of possibilities that can be tested during encoding
is greater than the previous generation format, which leads to
an impact both in computational cost and energy consumption
of AV1 codecs. In [5] this issue is highlighted, showing that
AV1 requires more than 100 times longer encoding times than
libvpx, the reference software of VP9.

It is worth mentioning that data servers in streaming
providers store a single video in several bitstreams represen-
tations, which are encoded under different conditions (e.g.,
video resolution, quality levels) in order to provide the best
bitstream according to the user’s requirements. Thus, as there
is a very high computational cost and energy consumption
in this process, more research and development of techniques
to reduce AV1 energy consumption is necessary to allow for
greater adoption of the format. This work aims to present a
study of how it may be possible in the context of streaming
data centers, by exploring the block partitioning similarities
and characteristics when encoding different representations of
the same content.



Fig. 1. AV1 block partitioning.

II. AV1 BLOCK PARTITIONING COMPLEXITY

AV1 is based on the structure known as the Hybrid Video
Coding Model [7], which means that it uses the same type
of operations as previous video coding formats. Intra-frame
prediction, inter-frame prediction, transform, quantization, and
entropy coding are part of this model. Most of these are block-
based functions, which means that they operate using blocks
of pixels as the basic data structure. Despite these similar
characteristics between video coding formats, the complexity
of AV1 has increased significantly when compared to the
previous format VP9. One of the features increased in AV1
is the block partitioning structure. In order to find the best
block size for each region of the video, AV1 allows block
sizes from 128×128 down to 4×4. In more complex regions
of the video (e.g., complex texture or motion), smaller blocks
are usually used, since the amount of detail to represent it
is greater. The AV1 block partitioning structure starts from a
Superblock (SB), which can be the size 128×128 (maximum
block size allowed) or 64×64 [5]. The SB can then be
recursively subdivided according to other square or rectangular
shapes, as shown in Fig. 1.

The simplest partitioning type present in Fig. 1 is
the quadratic block NONE of size N×N (where N ∈
{128, 64, 32, 16, 8, 4}), which means that this block has not
been divided into any other parts. Two other types of divisions
that can happen are the horizontal type (HORZ), which divides
the block in half horizontally, and the vertical type (VERT)
which divides the block vertically. In these cases the block
size will be N×N/2 and N/2×N, respectively. Of these two types
of partitioning, they are subdivided into four new ones, cate-
gorized as partitioning type ab, namely HORZ A, HORZ B,
VERT A and VERT B. The ab variation is characterized by
having a rectangular block on one side, which can be of size
N×N/2 or N/2×N, and on the other two square blocks of size

TABLE I
AV1 PARTITION TYPES ALLOWED FOR EVERY TREE DEPTH

tree depth partition types allowed
0 NONE, HORZ, VERT
1 NONE, HORZ, VERT, ab, 1to4
2 NONE, HORZ, VERT, ab, 1to4
3 NONE, HORZ, VERT, ab, 1to4
4 NONE, HORZ, VERT
5 NONE

N/2×N/2. Finally, in Fig. 1, we have the 1to4 type that has two
variations: first, there is the presence of four horizontal blocks
of size N×N/4, which is called HORZ 4; second, there is the
type VERT 4, which is known to have four vertical blocks of
size N/4×N.

It is important to note that not every partitioning tree depth
will have access to all these partitioning types. For example,
at depth 5, only type NONE is allowed, and at depths 0 and 4,
types ab and 1to4 are not accepted, as summarized in Table
I. There is also a last type of partitioning presented in Fig. 1,
called SPLIT, which indicates that no prediction mode will be
performed at that depth level of the partitioning tree. That is,
an advance in the depth level of the AV1 partitioning tree was
triggered, creating four new subtrees that will repeat the search
procedure recursively. As there are several ways to perform a
block partition and the encoder performs an exhaustive search
with all available options, this process ends up being highly
expensive.

It is also worth noting the amount of video representations
that needs to be stored and processed in streaming data
centers. Each video is encoded and stored under different
resolutions and quality levels [8], in order to provide a better
user experience. In order to implement these techniques, such
as Adaptive Bitrate Streaming [8], used by YouTube, and
Per-Title Encode Optimization [9], used by Netflix, the video
needs to be encoded under different quantization levels, which
is controlled by the Constrained Quality (CQ) parameter in
libaom. The CQ can assume an integer value between zero
and 63 [5] – the closer this value is to 63, the smaller is the
resulting bitrate (and the worse is the image quality). Another
important aspect is that lower CQs usually lead to longer
encoding times, since encoding decisions are performed under
greater demands to significantly reduce the loss of quality of
the encoded video.

This work aims to analyze statistical data obtained during
encoding time to observe the occurrence of block partitions
along the encoding process under different quantization levels
(CQ). The idea is to observe partitions distributions and devise
rules that can be employed in the development of heuristics
to reduce encoding time and energy consumption in video
streaming data centers.

III. METHODOLOGY

As already presented, the block partitioning structure is the
basis of every hybrid video coding model and its execution
impacts the entire coding process. Therefore, in this work,



TABLE II
IDENTIFYING THE PARTITIONING TREE DEPTH FROM AV1 BLOCK SIZES

tree depth block size
0 128×128, 128×64, 64×128
1 64×64, 64×32, 32×64, 64×16, 16×64
2 32×32, 32×16, 16×32, 32×8, 8×32
3 16×16, 16×8, 8×16, 16×4, 4×16
4 8×8, 8×4, 4×8
5 4×4

a statistical analysis will be carried out on how the choice
of depths throughout the encoding process behaves under
different quantization levels and thus try to seek better energy
efficiency. This will be done by comparing the occurrences
of the depths of a smaller CQ with a larger CQ. That is, by
looking at the coding tree depth of the high CQ encoding,
it will be possible to understand the probability of the low
CQ encoding choosing the same of any other partitioning tree
depth. This way, in future implementations it will be possible
to provide libaom with such information and avoid coding
depths that are unlikely to be chosen for certain regions of the
video.

To perform the experiments, 1920×1080 resolution videos
available in the recommended test set for AV1 were used
[5], since this resolution is one of the most common in
streaming services. Of the videos available for testing, five
of them were selected: RushHour, NetflixCrosswalk, Netflix-
TunnelFlag, RushFieldCuts, and TouchdownPass. To perform
the video encodings, the AV1 version 3.3 of reference soft-
ware, libaom, was used (under the hash code f9babb). As
recommended [5], we replicated the command line used to
run the experiment, under the parameters present below, where
CQ represents the quantization level (22, 32, 43, 55), W and
H represent the video resolution, A indicates the name of the
encoded file and F the number of frames per second. As in
streaming data centers, where videos are split into chunks of
some few seconds, only the first 60 frames of each video were
encoded.

./aomenc --verbose --psnr --frame-parallel=0
--tile-columns=0 --cpu-used=0 --threads=1
--end-usage=q --lag-in-frames=0 --kf-min-dist=1000
--kf-max-dist=1000 --i420 --width=W --height=H
--fps=F/1 --cq-level=CQ -o A.webm A.yuv

To obtain the data that will be used in the statistical analysis,
the libaom software was modified to allow the export of infor-
mation from the partitioning tree along with the encoding with
libaom. For each visible frame being encoded, information
such as block position (row and column) and block size are
exported. After encoding all the videos, an algorithm was
implemented in order to interpret the data exported from each
frame into its matrix, where each cell of this matrix represents
the depth of the partitioning tree of a 4×4 region of the frame.
Through the block size, it is possible to identify the depth level
of the partition tree, as shown in Table II.

TABLE III
STATISTICAL ANALYSIS ON THE CQ RELATION 32-20, IN PERCENTAGE

depth on CQ 20
0 1 2 3 4 5 rule sum

0 0.00 0.00 0.00 0.00 0.00 0.00 –
1 4.89 45.72 42.59 6.66 0.14 0.00 88.31
2 2.98 3.31 61.43 31.42 0.86 0.00 92.85
3 5.64 1.89 8.30 76.16 7.97 0.05 84.13
4 10.24 2.70 6.44 40.25 39.76 0.61 80.02

de
pt

h
on

C
Q

32

5 8.64 4.36 8.64 24.44 38.11 15.80 78.35
average all 84.73

TABLE IV
STATISTICAL ANALYSIS ON THE CQ RELATION 43-32, IN PERCENTAGE

depth on CQ 32
0 1 2 3 4 5 rule sum

0 0.00 0.00 0.00 0.00 0.00 0.00 –
1 0.00 72.66 25.65 1.62 0.07 0.00 98.31
2 0.00 5.10 70.76 23.44 0.70 0.00 94.20
3 0.00 8.49 10.07 74.97 6.42 0.04 81.39
4 0.00 17.49 3.02 39.64 39.18 0.67 78.82

de
pt

h
on

C
Q

43

5 0.00 10.15 1.29 32.94 42.29 13.33 88.56
average all 88.26

IV. RESULTS AND DISCUSSION

The results generated by the experiments can be seen in
Tables III, IV, and V, respectively for the CQ relations 32-
20, 43-32, and 55-43. The columns of the tables correspond
to the data coming from the encoding with the lower CQ and
the rows, in turn, correspond to the higher CQ. The established
relationship (cell) refers to the probability of choosing a depth
when encoding the lower CQ representation given that a
certain depth is observed in the higher CQ representation.

For example, in Table III (CQ relation 32-20), we see that a
frame region encoded with depth 2 in the CQ 32 representation
(line 2) will also be encoded with depth 2 in the CQ 20
representation (column 2) in 61.43% of the cases. Similarly,
Table V shows that this number grows to 74.06% in the
relationship 55-43.

In the tables, the columns with the highest probability of
occurrence were highlighted for each line of depth observed.
In this way, it is possible to identify that the highest probability
of some level of depth occurring for any relationship tends
to be the same depth observed at the lower CQ encoding.
The exceptions are for depths 4 and 5, which are most likely
to occur at the previous depth level (i.e., depths 3 and 4,
respectively). The hypothesis for this exception is the use of
better choices of partitioning types and/or predictive modes
would be made in a lower CQ. It is also observed the absence
of probabilities at depth 0. The hypothesis in this case is that
the videos chosen for the analysis were not encoded with depth
0 in any case.

If the depth level observed during coding was reused at a
lower quantization level, forcing the same depth level of the
tree to be chosen, an approximate average assertiveness of
47.77%, 54.18% and 59.03% would be obtained, respectively,
for the relations 32-20, 43-32 and 55-43. That is, the proba-



TABLE V
STATISTICAL ANALYSIS ON THE CQ RELATION 55-43, IN PERCENTAGE

depth on CQ 43
0 1 2 3 4 5 rule sum

0 0.00 0.00 0.00 0.00 0.00 0.00 –
1 0.00 81.76 17.27 0.95 0.02 0.00 99.03
2 0.00 5.23 74.06 20.19 0.51 0.01 94.25
3 0.00 8.45 10.39 74.72 6.33 0.11 81.05
4 0.00 11.00 0.94 44.35 42.58 1.13 86.93

de
pt

h
on

C
Q

55

5 0.00 5.05 1.38 24.31 47.25 22.02 93.58
average all 90.97

bility of getting the partitioning level right is low, bordering
on chance. In this way, a rule is suggested to increase the
probability of success of this information reuse: if the observed
depth is less than or equal to 3, it allows the encoder to apply
the same depth level or one more level. Otherwise (depths 4
and 5), it prevents the encoder from considering depth levels
lower than 3. The option to choose a depth level more than
what was observed in the first rule is caused by the perception
that there is a tendency for the encoding with the lowest
CQ to choose a partition under the current level, in order to
obtain a better image quality. Furthermore, choosing the next
depth level, to be applied in the first rule, is justified by the
observation that, at depths up to level 3, it is observed that the
second highest probability of occurrence is precisely the next
level of the observed depth.

Based on this rule proposal, the “rule sum” column on the
Tables III, IV, and V presents its probability of assertiveness.
Notice that the proposed rule would decide correctly for the
depth in 84.73%, 88.26%, and 90.97% of the cases, respec-
tively, for the CQ relations 32-20, 43-32, and 55-43. This rule
could be used in a future work as basis for a heuristic to reuse
partitioning structures between different CQ representations,
aiming at encoding acceleration. In other words, it will avoid
that libaom spends time and energy processing depths that are
statistically not recommended according to previous encodings
of the same video content. In this way, considerable energy
consumption savings are expected, especially in the context of
video streaming service data centers.

V. CONCLUSIONS AND FUTURE WORK

The AV1 video encoder presents a high computational cost
due to a large number of encoding tools and block partition
types allowed. In the context of video streaming data centers,
the encoding is performed several times for the same video,
generating bitstream representations for various resolutions
and qualities, aiming to provide compatibility with different
types of clients and network conditions. Therefore, through a

statistical analysis, this work identified opportunities to reuse
block size decisions throughout the encoding under different
quantization levels. More specifically, the analysis allowed
identifying that it is possible to reduce the test of parti-
tioning possibilities when encoding high-quality videos (low
quantization) based on characteristics observed when encoding
low-quality videos (high quantization). Even when avoiding
certain coding tree depths according to the observed at higher
quantization levels, there is still a possibility greater than 84%
of getting a correct block partition. In future work, we intend to
implement an heuristic approach based on the analysis carried
out in this paper, in order to obtain the resulting compression
efficiency (BD-Rate) and estimated energy consumption.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001, Foundation for Research Sup-
port of the State of Rio Grande do Sul (FAPERGS), and Na-
tional Council for Scientific and Technological Development
(CNPq).

REFERENCES

[1] Motion Picture Association, “Theme report: A comprehensive analysis
and survey of the theatrical and home/mobile entertainment
market environment for 2020,” mar 2020. [Online]. Avail-
able: https://www.motionpictures.org/wp-content/uploads/2021/03/MPA-
2020-THEME-Report.pdf

[2] A. Kempf, M. Silva, S. Onesseken, and B. Garcia,
“Consumo das plataformas de streaming antes e durante
a pandemia da covid-19,” 2021. [Online]. Available:
https://admpg.com.br/2021/anais/arquivos/09122021 230937 613eb539
011b0.pdf

[3] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcod-
ing: an overview of various techniques and research issues,” IEEE
Transactions on Multimedia, vol. 7, no. 5, pp. 793–804, 2005, doi:
10.1109/TMM.2005.854472.

[4] J. Ozer, “Hevc advance cuts content fees
on streaming,” mar 2018. [Online]. Avail-
able: https://www.streamingmedia.com/Articles/News/Online-Video-
News/HEVC-Advance-Cuts-Content-Fees-on-Streaming-123828.aspx

[5] J. Han, B. Li, D. Mukherjee, C. H. Chiang, A. Grange, C. Chen, H. Su,
S. Parker, S. Deng, U. Joshi, Y. Chen, Y. Wang, P. Wilkins, Y. Xu, and
J. Bankoski, “A technical overview of av1,” Proceedings of the IEEE, pp.
1–28, 2021, doi: 10.1109/JPROC.2021.3058584.

[6] A. Francis, “Top video technology trends 2022: The future of streaming is
about device reach,” 2020. [Online]. Available: https://bitmovin.com/top-
video-technology-trends/

[7] I. E. Richardson, Video codec design: developing image and video
compression systems. John Wiley & Sons, 2002.

[8] M. Ombura Jr., “How youtube handles streaming
4,000,000,000+ daily videos without a hitch,” 2019. [Online].
Available: https://medium.com/@martinomburajr/how-youtube-handles-
streaming-4-000-000-000-daily-videos-without-a-hitch-8542741e957a

[9] Netflix Technology Blog, “Per-title encode optimization,” dec
2015. [Online]. Available: https://netflixtechblog.com/per-title-encode-
optimization-7e99442b62a2


